If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2+126t+26=0
a = 5; b = 126; c = +26;
Δ = b2-4ac
Δ = 1262-4·5·26
Δ = 15356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{15356}=\sqrt{4*3839}=\sqrt{4}*\sqrt{3839}=2\sqrt{3839}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(126)-2\sqrt{3839}}{2*5}=\frac{-126-2\sqrt{3839}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(126)+2\sqrt{3839}}{2*5}=\frac{-126+2\sqrt{3839}}{10} $
| 1/8x-6=-12 | | 0.50(x+8)-9=2 | | |w+4|=11 | | 0.75(8x+24)-1=3x-1 | | 5t+126t+26=0 | | 4x+4=4x+7 | | 10^2+1x-2=154 | | 26,2x-4,72=3,7+4,2 | | -6m=3(3m-1) | | 8p^2+18p+45=2p | | Y=2x-2.75 | | 72x+12600=103x-400 | | -58=5+9x | | -0,02x-4,07=3,23x+4,08 | | 5x+7=-93 | | .66a+.5=3.5 | | -18,48+532,7x+12=54,3x | | 1052x+3=-12,64x-24,2 | | .66d+6=8 | | -2,5x+1,2=-8,3-2 | | 15x+3(1)=42 | | -20y=-160 | | 5x-2,5=3x+4 | | 2x-8=-6+1,5 | | -41y=41 | | R=-v^2-6v | | 2x–8=-6+1,5 | | 0.25n+8=6 | | -7/3r-7=3 | | -8x–3=0 | | ?x13+43-210=119 | | 0.5x-5=2 |